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SUMMARY

Development of new material models for describing the "high temperature"
constitutive behavior of real materials represents an important area of
research in engineering discipiines. Derivation of mathematical expressions
(constitutive equations) which describe this high temperature material behavior
can be quite time consuming, involved and error prone; thus intelligent appli-
cation of symbolic systems to facilitate this tedious process can be of signif-
fcant benefit. Here a computerized procedure (SDICE) capable of efficiently
deriving potential based constitutive models, in analytical form is presented.
This package, running under MACSYMA, has the following features: partial dif-
ferentiation, tensor computations, automatic grouping and labeling of common
factors, expression substitution and simplification, back substitution of
invariant and tensorial relations and a relational data base. Also Timited
aspects of invariant theory have been incorporated into SDICE due to the utili-
zation of potentials as a starting point and the desire for these potentials to
be frame invariant (objective). Finally not only calculation of flow and/or
evolutionary laws have been accomplished but also the determination of history
independent nonphysical coefficients in terms of physically measurable param-
eters, e.g., Young's medulus, has been achieved. The uniqueness of SDICE
resides in its ability to manipulate expressions in a general yet predefined
order and simplify expressions so as to limit expression growth. Results are
displayed when applicable utilizing index notation.

INTRODUCTION

Development of new material models for describing the constitutive behav-
for of real materials represents an important area of research in engineering
disciplines. This is evidenced by research activities, in areas associated,
for example, with high temperature composite, reinforced concrete and geotechni-
cal materials (ref. 3). Efforts in constitutive research involve the develop-
ment of mathematical relationships for predicting nonlinear material response,
derivation of material stiffness matrix appropriate for finite element calcula-
tions (ref. 2), and finally computer impiementation. The entire process re-
quires significant manual algebraic manipulations and computer programming.
Hence, the response time for the related efforts is quite long. As a result,
it 1s rather difficult to introduce significant changes or modifications into
a constitutive theory. Moreover, the outcome of the research effort may be



affected by human errors which are often difficult to detect. In this regard,
symbolic computation can play a major role. Immediate benefits that can be
realized are: (1) reduced manual tedium, (2) increased reliability of the de-
rived equations, hence the final analysis results, (3) shortened model develop-
ment time, and (4) investigation of alternative functional forms. Furthermore,
application of symbolic manipulation can provide a significant incentive to the
development of new constitutive theories and their finite element applications.
However, two major obstacles arise when symbolic manipulation methods are
applied for engineering applications; these are the number of steps in the der-
ivation process and the problem of expression growth (refs. 1 and 4 to 7).

Presented here is a problem oriented software package called SDICE (Sym-
bolic DerlIvation of Constitutive Equations) which is intended to assist in the
derivation of potential based constitutive equations (refs. 14 and 18). The
major features of SDICE are the automation of the equation derivation steps and
its ability to simplify the results so as to alleviate the expression growth
problem.

SYSTEM SPECIFICATIONS OF SDICE

In deriving the material corstitutive equations and matrices, six types of
mathematical manipulations are required, i.e.,

(1) Partial differentiation

(2) Tensor computations

(3) Factorizations of common terms

(4) Expression simplification

(5) Back-substitution of invariant and tensorial relations

Also, limited aspects of invariant theory (ref. 13) has been incorporated
into SDICE due to the utilization of potentials as a starting point and the
desire for these potentials to be frame invariant (objective).

It has been shown that in most cases, the results obtained from direct
application of a general purpose symbolic system, such as MACSYMA (ref. 20) are
not useful due to the number of steps involved in the derivation process and
the problems associated with expression growth. For this reason, resourceful
derivation procedures must be developed so that optimal results can be obtained
(refs. 14 to 16). The essential features of the approach taken to address the

above problems consists of:

(1) A structured derivation procedure to avoid redundant steps and to min-
imize expression growth,

(2) Implementation of special procedures (e.g., procedures for simplifica-
tion and pattern recognition) to facilitate the derivation process,

(3) Expression substitution and simplification during the entire deriva-
tion process by incorporating several levels of processing,

(4) Automatic grouping and lTabeling of common factors,

(5) Taking advantage of permutation and symmetry relationships of the
terms involved in each derivation step, and

(6) As a rule-based system, intended for constitutive equation research,
SDICE will record user defined rules and store them in a relational
data base, whereby the information may be retrieved, redefined and
restored as required.



Some of the above procedures and techniques will be discussed, through
application examples, in the next section.

APPLICATION TO CONSTITUTIVE EQUATIONS FOR VISCOPLASTIC MATERIAL MODELS

Constitutive laws provide the link between stress components ojj and
strain components e{j at any point in a body. These laws may be sifple or
extremely complex, depending upon the material of the body and the conditions
to which it has been subjected. Consider the well known case of a hyperelas-
tic material. Here, the stress and strain components are related through a
normality structure utilizing either a strain energy or complementary energy
function, i.e.,

W
or
aQ
e,, = (2)
ij Boij

For fnelastic material behavior the internal state variable potential
viewpoint is adopted, 1.e.,

Q= Q<°1j’aB’T) (3

with the generalized normality structure (refs. 8 to 10)

- 30 .
eij = 801j i,j=1,2,3 (4)
and
. N
ag = —h(aY) aaB B=1,2,. . .,n (5)

Where Q s the complementary dissipation potential function, éij the inelas-
tic strain, and ap the internal state varfables. Equations (4)7and (5) are
known as the flow and evolutionary equations, respectively.

Frame invariance (objectivity) of the resulting constitutive relations is
tnsured by requiring the potential, Q, to depend only on certain invariarts and
fnvariant products of its respective tensorial arguments, 1.e., an integrity
basis. Both isotropic and transversely isotropic material symmetries have been
considered. Transversely isotropic material symmetry is included in the poten-
tials of equations (1) to (3) by introducing a directional tensor didj, e.g.,
Q = Qojj,ap,djdy,T) or W = (ejj,dydy). The symmetric tensor didj s
formed by a self product of the Unit Vector dj denoting the local preferred
direction. :

Two viscoplastic theories have been proposed for isotropic materials
(refs. 11 and 12). In both theories the existence of a dissipation potential
is assumed, and the form is taken to be,
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Q- KZ[%; f LG g(G)dG] (6)

where the dependence of the applied stress and internal stress (cf eq. (3))
enters through the scalar functions F(Z1j) and Glajj), respectively.

For a material with transversely isotropic symmetry the dissipation poten-
ttal is assumed to take the form of equation (6) where now the dependence of
the applied stress, internal stress, and preferred direction enters through
the scalar functions F(Ly5,djdy) and G(ajj,djdj) respectively. The stress
dependence is now given by

F e [AJ2 + BJ; + CJi] -1

G = {ASZ + Blg + c3§]

where
1
J2 =3 zijzij
J4 = didjzji
J5 = didjzjkzk1
3, =1a..a
2~ 2 7ijvi]
J4 = didjaj1
J5 = didjajkaki

My T iy T Ay

) =0 —108
ij i3 7 3 %kk®ij

A= oy - x b
13 7 M3 7 3 %kk°ij

Upon application of equations (4) and (5) the resulting flow and evolutionary
laws are:

: £CF)
A TLT (7
a1y = M@y - (G (8)



where

wiro

T CJ4(3d1dj - Sij)

i Azij + B[dkdizjk + djdeki - 234d1dj] +

Aa,. + BId 3

(3didj - 813)

wiro

Wij ij kdiajk + djdkaki - 234didj] + 4
The computations required in the derivation of the above flow and evolu-
tionary equations are partial differentiation and tensorial manipulation of
invariant relations. Direct use of a symbolic system, as our tool, in the der-
ivation process is complicated. So, special purpose procedures have to be
designed and implemented in order to simplify and expedite the derivation proc-
ess. Our work thus far has resulted in the development of several strategies,

namely:
(1) Store the invariant relations in a relational data base.

(2) Implement procedures to compute tensor expressions according to the
rules defined in tensor calculus.

(3) Map a tensor into the domain of a scalar by utilizing a property list
to store the variable and its subscript; thereby, allowing all differentiation
to be treated in the same way.

(4) Generate subscripts for intermediate tensor variables and store them
in the same property list in a predefined order.

(5) Differentiation results are represented by a search tree, starting
with the potential function as the root of the tree and its descendants with-
out dependent relations among themselves as leaves. A separate procedure
decides whether the function and its variables are tensorial or scalar.

(6) Finally, check the property 1ist and if the function involves tensors,
subscripts are added back for the final result according to the predetermined
order.

(7) Simplify the result by (a) checking the data base so as to replace any
known invariant relation in the final expressions, (b) grouping common terms by
factorization, and (¢) identifying terms that can be written as a tensor.

For example, when processing the invariant Jp in the transversely iso-
tropic case, the definition is

1
I =7 Iyl
the procedure first generates
3, 8+ 3
2 .2 L..L.. + I zijzu
Zk] Zkl ijoij 2 Zk]

following the chain-rule. Calling the procedure recursively, we have
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Then checking the data base for invariant relations and applying the tensor

routines, we obtain from above

221381k M

Thus by combining we have,

BJZ

8213

Finally, by calling the procedure identifying the rules of tensorial cal-
culus and back-substituting, the result becomes Ikj.

21381k831

A1l the required computational rules for deriving the constitutive equa-
tion have been integrated into SDICE along with rules which define tensorial
calculus and invariant relations. For example, in deriving the flow law for a
transversely isotropic model, we have

.. @ (gf_ 92 oF Y5 o ¥4 ) 8Ly asrs]
197 Boy; " OF|\83, 3L, * aJ; AL T 83, L) B o,

From equation (6) we know that

2

aQ _
T 2 f(F)

and by tensor calculus and indical notation we have

Ly asrs

3sS__ 1j Sy r 1s(sr1 si ~ 3 83 rs)

a5,

<5k1513 - 3 5138k1)

By introducing constants A, B, and C into the assumed forms of F and G
as indicated earlier, requires that

H



a5 = 2CJ
3J4 4
aF
o .8
335

and differentiating invariant relations through the procedures we have just
mentioned results in

aJ
2,

azk] k1

8J4

and

ﬁl;_]- dpdq(quserrp + quSrKSp])

z
dpdq(Sqk 1p EqKSp])

= dpdkzlp + qud]dq

Next back substitution is activated,

aF My
BJZ azk] k1
aJ

oF %4
o = 2CJ,d
J, 3T, 4

k9

and

aJ

5
azk1 = B(dpdkzlp + d]dqzqk)

Q

F

(o) ]
()

5

Finally, by checking the data base and substituting back all tensorial as
well as invariant retations defined in the table into the original expression,
SDICE produced the following form for the flow law

: f(ff)gkz(bb(3ggt11j - ngijjj4) + cc(6d1d. - 2gdij)jj4 + 3aa gssij)IGgm

gedi. 3

J

where

ggt]ij : didilgssjil + gssﬁ]d“dj

To obtain the associated evolutionary law, equation (5) is applied, i.e.,
instruct SDICE to take the following action
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resulting in

gad,y ¢ hb gedy - 9(gg) gk% hb rr (bb(3g9t2, 4 - 2gd,;313a®)

J

.)/3hh

+ cc(6did. - ngij)jja4 + 3a a13

J
where

99t2y4 ¢ dydyagyy + 35494594

This agrees completely with equation (7) which was manually obtained. (We
have adopted the convention of using double lower case letters for capital let-
ters, and variables starting with "g" mean Greek alphabet).

IMPLEMENTATION OF PROBLEM-ORIENTED COMPUTATION PROCEDURE

Application of symbolic systems for material model development involves
the symbolic solutions of systems of simultaneous equations. There are proce-
dures under MACSYMA to solve systems of equations of different type. However,
these general-purpose procedures when applied to our application, cause expres-
sion growth to become uncontrollable and the results are often not useful.

Under MACSYMA, for example, there are procedures for solving systems of
equations, such as solve and linsolve. For certain applications, by setting
the parameter backsubst equal to false, the results are simpler and the solu-
tion process faster because back substitution is prevented after the system of
equations have been triangularized. This may be necessary in very large prob-
lems where back substitution would cause the generation of extremely large
expressions (readers are referred to MACSYMA Manual for details).

The systems of equations we are dealing with are primarily sparse and the
coefficients of their variables are usually not numbers but polynomials. The
application of Gaussian elimination which is used in linsolve produces results
that are usually lengthy and inefficient.

A new derivation procedure is implemented into SDICE to solve the problem
of expression growth and increase the computational efficiency. The underlying
concept behind this improved procedure is the identification of the smallest
full subsystem contained within the original and then subsequent remaining sys-
tems. Gaussian elimination is employed to solve these subsystems independently
and sequentially instead of the complete system.

To clarify this procedure, consider the following sparse system of
equations:

—

]

2068 - tu s 3t5)x2 + 5CU 4 B)x] = 3 (9)
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(2t - 3wx] - 2u8x2 < L WU+ U) (10)
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k-1

3
7x5 - autxg  LUX3_3X2 1.9 (12)
3¢ 7
(t+ 1)

_50°x5 + auxa + 303x3 + 20%K2 4 Sg—igglil - 10 (13)

t

The procedure first searches for the smallest full subsystem in the system and
in our case, chooses (9) and (10). The subsystem is then solved by Gaussian
elimination without generation of intermediate variables and we obtain:

VU= Oku? - Tktu + 21ktd) + 444°

x| =
16kud + BOktu? - 88ktlu + 48Kkt
2 . 200 - 1601 + 7 Vs D)
2
16U

The symbols x1 and x2 are then stored and treated as constants in the
remaining equations. With the remaining 3 x 3 system, the smallest subsystem
is 1 x 1. So, an intermediate variable zz! 1is generated to represent that
part of the equation containing the previously determined variables, that is

z2zZ1 = 13u2x2 + 13x1

and x3 can now be solved for immediately.

2 2 /3

. (t° - 2t + 1)zz1 + (-8t
39u

+ 16t - 8)(kt - W)
3

x3

Following the same steps as before, the remaining system of unknowns is a full
2 x 2 system, and two intermediate variables 2zz2 and zz3 are generated to
represent previously obtained variables.

3

222 = 3 71; x3 + 3—;—2- + uxl
t° + 3t + 3t + 1
and
223 = 3u3x3 + 20%x2 + S!*iiilil
t

Finally, by applying Gaussian elimination, we have



_ 7223 + u>(5222 - 45) - 70

2007 - 2804

x4

and

=222 + 4u4x4 + 9
X5 = 7

By comparing with the result obtained from MACSYMA, the expression size
is smaller and the computation effort required is less, due to the generation
of intermediate variables and the partitioning of the system into smaller
subsystems.

CONCLUSION

We have discussed the use of a symbolic computation method to automati-
cally derive constitutive equations. The derivation steps and some of the com-
putational methods used for potential based constitutive model research have
been presented. It is hoped that the approach discussed here may find applica-
tions in physics as well as other engineering disciplines.
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